Direct Detection of a Sulfonate Ester Genotoxic Impurity by Atmospheric-Pressure Thermal Desorption–Extractive Electrospray–Mass Spectrometry
نویسندگان
چکیده
A direct, ambient ionization method has been developed using atmospheric pressure thermal desorption-extractive electrospray-mass spectrometry (AP/TD-EESI-MS) for the detection of the genotoxic impurity (GTI) methyl p-toluenesulfonate (MTS) in a surrogate pharmaceutical matrix. A custom-made thermal desorption probe was used to the desorb and vaporize MTS from the solid state, by rapid heating to 200 °C then cooling to ambient temperature, with a cycle time of 6 min. The detection of MTS using EESI with a sodium acetate doped solvent to generate the [MTS+Na](+) adduct ion provided a significant sensitivity enhancement relative to the [M+H](+) ion generated using a 0.1% formic acid solvent modifier. The MTS detection limit is over an order of magnitude below the long-term daily threshold of toxicological concern (TTC) of 1.5 μg/g and the potential for quantitative analysis has been determined using starch as a surrogate active pharmaceutical ingredient (API).
منابع مشابه
Direct Determination of Urinary Creatinine by Reactive-Thermal Desorption-Extractive Electrospray-Ion Mobility-Tandem Mass Spectrometry.
A direct, ambient ionization method has been developed for the determination of creatinine in urine that combines derivatization and thermal desorption with extractive electrospray ionization and ion mobility-mass spectrometry. The volatility of creatinine was enhanced by a rapid on-probe aqueous acylation reaction, using a custom-made thermal desorption probe, allowing thermal desorption and i...
متن کاملReversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins.
The application of continuous flow-extractive desorption electrospray ionization (CF-EDESI), an ambient ionization source demonstrated previously for use with intact protein analysis, is expanded here for the coupling of reversed phase protein separations to mass spectrometry. This configuration allows the introduction of charging additives to enhance detection without affecting the chromatogra...
متن کاملNonresonant Femtosecond Laser Vaporization with Electrospray Postionization for <italic>ex vivo</italic> Plant Tissue Typing Using Compressive Linear Classification
T detection and identification of molecules within complex biological matrixes (i.e., plant tissue) requires homogenization, filtration, and liquid extraction of the sample to prepare for analysis using techniques such as gas chromatography/mass spectrometry (GC/MS), liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), and LC-NMR. Direct analysis...
متن کاملDirect detection of native proteins in biological matrices using extractive electrospray ionization mass spectrometry.
The high-throughput and sensitive characterization of native proteins in biological samples is of increasing interest in multiple disciplines. Extractive electrospray ionization (EESI) forms ions of native proteins including lysozyme, α-chymotrypsin, myoglobin, human serum albumin, RNAse A and blood hemoglobin in extremely complex biosamples or PBS buffer solutions by softly depositing charges ...
متن کاملDetecting Trace Explosives and Formulations Using Laser Electrospray Mass Spectrometry
Mass analysis using laser electrospray mass spectrometry (LEMS) is demonstrated for the detection of trace samples of explosives at atmospheric pressure directly from a substrate. A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect < 1 µg of 2,3-dime...
متن کامل